readme.md
A langchain demo in xethub
A langchain project using openai to answer questions about fairy tales by indexing text files, querying a sqlite database, and running python code.
Requirements
$ python -m venv .venv
$ . .venv/bin/activate
$ pip install -r requirements.txt
$ export OPENAI_API_KEY=YOUR_OPENAI_API_KEY
If you want to try searching the internet:
Sign here
pip install google-search-results
export SERP_API_KEY=YOUT_SERP_API_KEY
Checkout index and sql database
git xet checkout -- index
git xet checkout -- data
Instructions
Search docs
To search within a group of files, we must first split them to small chunks, embed them as vectors, and save to an
index.
On query time, we find the most relevant chunks, retrieve them and construct a prompt with the query and the context.
Usage
With langchain, building a doc search engine is as simple as:
from langchain.document_loaders import TextLoader
from langchain.indexes import VectorstoreIndexCreator
import glob
import itertools
loaders = list(itertools.chain(*[TextLoader(file_path) for file_path in glob.glob(f'data/*.txt')]))
index = VectorstoreIndexCreator().from_loaders(loaders)
index.query_with_sources("Who was Pinocchio's father?")
In this repo we made an index helper which wrap it for training and querying workflows.
from src.index import Index
index = Index(index_path='index').fit("data", reset=True)
index = Index.load('model_path')
index.query("Who was Pinocchio's father?")
python src/train.py
would do the same- If you clone the repo as is, the index is already populated.
- Chunking-strategies
SQL queries
We saved a sqlite db with imdb dataset in the same data folder. With langchain we can query it with natural language.
from langchain import OpenAI, SQLDatabase
from langchain.chains import SQLDatabaseSequentialChain
db_chain = SQLDatabaseSequentialChain.from_llm(llm=OpenAI(temperature=0),
database=SQLDatabase.from_uri("sqlite:///data/imdb.db"),
verbose=True)
db_chain.run("How many movies are there?")
Python
We can also run python code with langchain using PythonREPL (Read-Eval-Print Loop).
from langchain.agents import Tool
from langchain.utilities import PythonREPL
repl_tool = Tool(
name="python_repl",
description="A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.",
func=PythonREPL().run
)
repl_tool.run("print('Hello World')")
Search the internet
- You'll need a serp api key
export SERP_API_KEY=YOUT_SERP_API_KEY
pip install google-search-results
from langchain.utilities import SerpAPIWrapper
search = SerpAPIWrapper()
print(search.run("Obama's first name?"))
If you don't want, we can use wikipedia instead.
pip install wikipedia
from langchain.utilities import WikipediaAPIWrapper
print(WikipediaAPIWrapper().run("Who was Pinocchio's father?"))
Chatbots
A Chatbot is created by holding on to the last few messages plus a system basic message.
A quick example:
from langchain.llms import OpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
llm = OpenAI(temperature=0)
conversation = ConversationChain(
llm=llm,
verbose=True,
memory=ConversationBufferMemory()
)
conversation.predict(input="how are you doing?")
A more ChatGPT-like can be by adjusting the system prompt
from langchain import OpenAI, LLMChain, PromptTemplate
from langchain.memory import ConversationBufferWindowMemory
import pathlib
prompt = PromptTemplate(
input_variables=["history", "human_input"],
template=pathlib.Path("prompts/markdown_assistant.txt").read_text() # I made her a bit sassier
)
chatgpt_chain = LLMChain(
llm=OpenAI(temperature=0),
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(k=4),
)
print(chatgpt_chain.predict(human_input="Do you believe in the moon landing?"))
print(chatgpt_chain.predict(human_input="What is in area 51?"))
Combining everything
We can use all of these capabilities as tool and provide them to our agent.
from langchain import OpenAI, SerpAPIWrapper
from langchain.agents import Tool, initialize_agent
from langchain.agents import AgentType
from langchain.tools.python.tool import PythonREPLTool
llm = OpenAI(temperature=0)
tools = [
Tool(
name="Search",
func=SerpAPIWrapper().run,
description="useful for when you need to answer questions about current events. You should ask targeted questions"
),
Tool(
name="Python",
func=PythonREPLTool().run,
description="useful for when you need to calculate somthing using programing"
),
]
mrkl = initialize_agent(tools, llm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
mrkl.run("What is the capital of France? and use python to get a hash of it")
Run the app
gradio app.py
File List | Total items: 14 | ||
---|---|---|---|
Name | Last Commit | Size | Last Modified |
data | |||
docs | |||
index | |||
logging/sqlitecache | |||
notebooks | |||
prompts | |||
src | |||
tests | |||
.gitattributes | |||
.gitignore | |||
app.py | |||
config.py | |||
readme.md | |||
requirements.txt |
Repository Size
Activity 13 commits
-
committed 2c92b1847b 1wk ago
-
committed 1c2f268bae 1wk ago
-
committed 0940c27f09 2wk ago
-
committed 8206205e8c 2wk ago
-
committed 10686d3c08 2wk ago